
ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

1 | P a g e

Administrative Case Event System (ACES) Project

Strategic Design Document

Authored by Steele Price

Version 1.0

Dated 6/1/2016

File Name ACES Strategic Design.docx

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

2 | P a g e

Review Control and Change Control

Review Control

Version Date Reviewer

1.0 June 21, 2016 Brian Heady

Change Control

Version Date Change Actioned By

1.0 June 1, 2016 Initial Document Steele Price

1.1 June 21, 2016 Applied several Edits, Added Examples for Clarity Steele Price

1.2 June 29, 2016 Reworded some phrases, added examples Steele Price

1.3 July 1, 2016 Modified for the newest Aggregate Changes Steele Price

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

3 | P a g e

1 CONTENTS

1 Contents ... 3

2 Overview .. 5

2.1 Introduction .. 5

2.2 Assumptions.. 5

3 Process Design ... 6

3.1 Process Flow ... 6

3.2 Major Design Elements .. 7

3.2.1 Design Goals ... 7

3.2.2 Public Interface .. 7

3.2.3 Domain Adapter... 8

3.2.4 Projected View ... 8

3.2.5 Domain Aggregate ... 8

3.2.6 Domain Entity... 9

3.2.7 Value Object ... 9

3.2.8 Domain Services... 9

3.2.9 Domain Repository .. 9

3.2.10 Event Store ..10

3.2.11 Low Level Repository ..11

3.2.12 External Elements ...12

4 Message Processing ..13

4.1 Command Message ..13

4.2 Event Message ..13

4.3 Document Message..13

4.4 Query Message ...13

4.5 Communication Matrix and Message Format ..14

5 Design Pattern Reference ...15

6 Works Cited..16

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

4 | P a g e

7 Related Documents ...16

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

5 | P a g e

2 OVERVIEW

2.1 INTRODUCTION

The Administrative Case Event System (ACES) is an information system designed to facilitate the unification of Court Case

information across many self-contained management systems which are each designated as the source of truth. When changes

occur in a Source System, a command and event pattern is established to convey this information to other interested systems.

In order to expedite the transfer of information to a central point of reference, ACES provides a communication gateway with an

immutable, “eventually consistent” model of data shared among systems. The structure of ACES is a Service Oriented Architecture.

Anne Thomas Manes describes it this way: “Although the word “SOA” is dead, the requirement for service-oriented architecture is

stronger than ever. But perhaps that’s the challenge: The acronym got in the way. People forgot what SOA stands for. They wer e too

wrapped up in silly technology debates (e.g., “what’s the best ESB?” or “WS-* vs. REST”), and they missed the important stuff:

architecture and services. Successful SOA (i.e., application re-architecture) requires disruption to the status quo. SOA is not simply a

matter of deploying new technology and building service interfaces to existing applications; it requires redesign of the application

portfolio. And it requires a massive shift in the way IT operates.”… “If you want spectacular gains, then you need to make a

spectacular commitment to change.” (Thomas Manes, 2009)

These are the types of Architecture and Services we are discussing within ACES. The Services are asynchronous, durable, flexible and

scalable. We leverage some current processes while re-engineering less optimal ones. Taking something that is designed to work

locally and shoehorn it into a world of network calls will result in problems. Messages should be designed in a remote first mindset

with explicit contracts that can support versioning and maintenance. We know demand always changes, for this fact we strive to

accommodate growth and traffic patterns, while more importantly, rapidly adapting to changing needs of the business of the Courts.

Court applications will use ACES to communicate with each other, with other agencies, and with the general public.

Historically, system integration has relied on the passing of flat fi les, synchronized central databases or point to point message

delivery system like IBM Websphere MQ. The ACES approach provides notification of changes to any and all interested consumers

with Event Stream Processing. It uses ideas from real-time data management, asynchronous scalability, and stateless messaging.

A great chasm often exists between Applications, Services and Content. There should be a direct path to what people want, when

and where they want it. Applications must be smart enough to complete common actions without spelunking into a myriad of

monolithic Applications in order to achieve it. ACES aims to bridge that chasm and provide the mechanism for elegant intelligence.

2.2 ASSUMPTIONS

It is assumed that the specific Features and Requirements for this system are not included in this document, but reside in a lower

level Document targeting the specific Major Design Elements. Nomenclature with a defined meaning is highlighted with italics.

ACES is built as a Reactive, Event Based System: “Systems built as Reactive Systems are more flexible, loosely-coupled and scalable.

This makes them easier to develop and amenable to change. They are significantly more tolerant of failure and when failure does

occur they meet it with elegance rather than disaster.”1

The design approach of ACES is Distributed Domain-Driven Design — collaboration between development teams and business

experts to produce useful models to solve problems. This commitment to collaboration and knowledge sharing must take place for

development teams to gain the deep insights required to function within the problem domain. For a deeper understanding of

Domain-Driven Design, we recommend reading Domain-Driven Design Distilled by Vaughn Vernon.2

1 http://www.reactivemanifesto.org/
2 https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420

http://www.reactivemanifesto.org/
https://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

6 | P a g e

3 PROCESS DESIGN

The process design accounts for each Major Design Element using a well-defined and consistent methodology for accomplishing

communication among parts of the whole system.

3.1 PROCESS FLOW

The following diagram illustrates the process flow for integration of available data. It describes the paths that data and notifications

take as they traverse the ACES system:

Figure 1

Domain
Adapters

Domain
Adapters

Applications

EDMS

AOC
CDR

Other
Courts

Court

CourtCase

Document

Participant

Court Staff

JudicialOfficer

Party

Organization

Attorney

Attorney Firm
Address

CCIPublic Interfaces

CCI

AZTEC

Court

CourtCase

Participant

Descriptions

Domain Attributes

 Version 3.27/1/2016

ECF

EDMS

AZTEC

Linked IDs

Court

CourtCase

Document

Participant

Financial

Hearing

Charge

Sentence

Judgement

Turbo Court

EBench

EAccess

CCI
(SQL)

AZTEC
(Informix)

EDMS

Consistency

Request/Response

Administrative Case Event System

AJACS

AGAVE

iCIS

AJACS
AJACS
(SQL)

EVENT
STORES

CourtCase

Document

Participant

Request/Response

NICS

Item

Hearing

Charge

Sentence

Order

Warrant

Write
(Commands)

Read

EWarrant

ECriminal

FARE

Financial

Queries

Others

Warehouse

DWH
(Informix)

Projections

Judgement

Events

Phone

Email

Identitification

Alias

DocLink

Order

Domain Services

Document

Hearing

Charge

Sentence

Order

Warrant

Financial

Judgement

External
Services

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

7 | P a g e

3.2 MAJOR DESIGN ELEMENT S

3.2.1 DESIGN GOALS

The driving goals behind the design of ACES is to use accepted standards, industry proven service orientation, and asynchronous

messaging principles for the integration of Court Case related information.

The following list provides few Major Design Element goals:

 High Availability

 High Performance

 Resilient By Design

 Service Oriented

 Elastic and Decentralized

 Message based integration and interactions

 Extensible

Figure 2- http://www.reactivemanifesto.org/

3.2.2 PUBLIC INTERFACE

Public Interfaces also known as API Gateways are how external Applications and Services interact with ACES. While these are

typically Web Services, there are also integration points for IBM WebSphere Message Queues, Flat file consumption and Data Pulls.

Collectively, these are referred to as the API. All Interaction is performed through a published set of Message Standards which are

outside the scope of this document. See the Related Documents section for access to these external standards.

API Gateway resources are designed synthetically to follow client-driven use cases. When the client diverges from the Canonical

Message Model, Context Mapping is used for translation. When working with MQ, a Message Bridge pattern is used.

Optimally, a connected application will communicate messages in real-time with ACES. This is the eventual intended methodology,

though it is not the only available option. Legacy Flat Files and Timed Bulk Data Pulls are fully supported to allow for a lengthy

transition period. Such legacy interaction still produces a set of Events that are routed the same way and become real-time bulk

Messages. Routed Events provide the elastic scalability that is capable of processing large numbers of incoming Events by increasing

capacity when needed and reducing capacity when no longer required.

http://www.reactivemanifesto.org/

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

8 | P a g e

3.2.2.1 VALIDATIONS

All Incoming Messages MUST be validated for authentication, authorization and content. Schema and structure validations will be

provided using message contracts. These endpoints expose the Public Interfaces for ACES Integration.

Public Interfaces and Contracts conform to published standards which are outside the scope of this document, such as the Oasis ECF

4.01 Standard, the CCI Data Request Dictionary, and the DocLink Security Standard. See the Related Documents section for access to

these external standards.

3.2.3 DOMAIN ADAPTER

Domain Adapters consist of Message Endpoints, Message Routers and Message Translators which adapt external systems into the

Canonical Message Model of ACES. Domain Adapters are normally Service Activators in which the API Gateway delegates to an

internal Application Service. This is being done now with eFiling, eWarrant, EDMS, AZTEC, DocLink, NICS and Interpreter Registry.

3.2.4 PROJECTED VIEW

Projected Views are Document Messages that are the response to a Query Message or delivered as the result of a Domain Event

being handled. The 3 Projected Views depicted in Figure 1 are for illustration purposes only. There could be 1, 2 or a thousand

different Projected Views for a CourtCase, Document or Participant, the il lustration depicts that these Identities are the primary way

of accessing the particular Projected View. As other Projected Views are required for optimizing specific applications, they are

added to this section. These are usually referred to as “Data Transport Objects” (Fowler, 2003).

3.2.5 DOMAIN AGGREGATE

“Aggregates are a cluster of associated objects that we treat as a unit for the purpose of data changes.” (Evans, 2004)

Aggregates are what allow us to enforce business rules that must always remain consistent. It also allows us to optimize the flow of

data to other external systems which may be listening for changes in CourtCase data.

This is not about changing or cleansing data, but rather how to notify an external system when ACES cannot use the data to

communicate with another system as the data was presented to it. It also helps to optimize how we collect the correct information

to send to an external system or to produce optimized Read Models for the data an Application needs.

Aggregates create Events — Success Events as well as Failure Events such as a consistency or communication failure. Events control

and process the operation of Workflows and State Machines within ACES.

For example, Events may be used to alert a source system. Let’s look at a NICS example. When incoming CourtCase data is

presented to ACES, it produces several Import Events. When a NICS Import Failure Event occurs, ACES can send a Message

communication to the Source System alerting it that a localized change is required in order to have data participate in an exchange

with NICS. This can happen in a specific way that is negotiated with the Source System. When the data is modified by the Source

System, the Aggregate will then create the NICS Import Success Event which is collected by the NICS Event Handler.

When dealing with incoming data, the ACES system should not continually try to communicate data which it already knows is

problematic. In the case of NICS, it does not collect anything but NICS Success Events. It does however, place the data in other Read

Models which are compatible with the data for use with other systems. This strategy prevents incompatible data from continually

being presented to external systems, while preserving it for use with other compatible systems.

This improves the resilience of the system as a whole and assigns the responsibility for correction back to the Source System.

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

9 | P a g e

3.2.6 DOMAIN ENTITY

An Entity in this material describes an object primarily defined by its identity and has a specified Lifecycle. Entities are typically a

Value Object, or collection of Value Objects which are assigned an Identity within the system that is tracked and used to refer to the

specific Entity thereafter. They have a beginning, a middle and an end which denote the Lifecycle. Lifecycles typically have special

meaning on creation such as possibly assigning an Identifier. Additionally, upon removal, there may be special workflows which may

need to be processed.

3.2.7 VALUE OBJECT

Value Objects are a collection of characteristics which describe something. They are changed together as a whole and when

exchanging one for another there is no discernable difference to the system. While they may certainly may be assigned an identity,

the idea that they are interchangeable as a whole and remain immutable as a whole is more important.

3.2.8 DOMAIN SERVICES

Domain Services are operations which lie outside the scope of a specific Aggregate, Domain Entity or Value Object. They usually

require more information than can be provided by those three patterns in an encapsulated manner. These services may act as Pipes

and Filters for Projected Views or Domain Aggregates to restrict or enrich a Document Message.

One such scenario is the Security Model, this may use a Domain Service for routing and working with unauthenticated Users until

they are authenticated.

Another scenario is the Business Rules that restrict Public Document Access, these rules operate as a filter for populating certain

Read Models as well as providing filters for Document Messages through the Projected Views. The Rules governing one of the fi lters

may be changed (outside the scope of a particular Document Message) and with that change, all functionality involving the use of

this particular fi lter change at once. This alleviates any side-effects to other fi lters, rules, or processes which are treated separately.

One such service is the “Rule 123 Filter” which both populates the Read Model used for ROAM Indices used for Public Access as well

as l ive Queries into the system for eFiling and DocLink. When Rules governing the “Rule 123 Filter” change, they change everywhere

at once. Read Models using the fi lter can then be notified by ACES to rebuild themselves.

3.2.9 DOMAIN REPOSITORY

A Repository “mediates between the domain and data mapping layers using a collection-like interface for accessing domain objects.”

(Fowler, 2003)

Domain Repositories are the internal data stores where Domain Aggregates and Projected Views are persisted. Domain Repositories

are used internally by ACES as the sole place where Domain Aggregates persist data and from where Projected Views are populated.

This allows for other Read Models, such as eBench, CCI and the NICS Repository to react to any Event whi ch takes place within the

Domain. Domain Repositories are responsible for routing Events related to incoming data changes and managing the transactional

consistency of the Domain Aggregates.

An example use is when a bulk data pull is made from a remote Court. Court Case information is immediately persisted to the Event

Store as an Incoming Data Event for each item of data. This Incoming Data Event is read and handled by the CourtCase Aggregate

which persists the data in each Domain Entity to a Domain Repository within a Transactional Boundary. When the repository

transaction succeeds, a new Domain Event is persisted in the Event Store, reflecting a change has been made to a CourtCase Domain

Aggregate. Read Models subscribed to the Domain Event respond by persisting the change in the local Read Model format.

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

10 | P a g e

3.2.10 EVENT STORE

An Event Store is a specialized data store which records a transactional log of things that have already happened within ACES.

Events are ALWAYS past tense and cannot be changed, they have already happened. A compensating Event can reverse a previous

Event, but Events never mutate. Since these Events never change, it is an append-only repository and not intended for querying.

Querying is supported through a business context specific Read Model.

Events may be published in order for multiple systems to react to the same Event. This would include publishing change events to

multiple Read Models at the same time. Published Events for Persisted Data Models are known as Projections.

Once a Projection is available, Read Models subscribe to Events in that Projection and are populated with changes in near real-time

to reflect the current state of its context. One distinct advantage of this Projection Model is that it allows for the inevitability that a

Read Model needs to be taken offline. When the Read Model is brought back online it executes a catchup subscription to replay the

Events it has missed since being offline. By replaying the missed Events, the Read Model is brought back into consistency by the

existing Service, without a need for any special coding.

Since Read Models are updated from the Events, various data models can be configured differently from each other to allow for

specific data optimizations and load characteristics according the needs of the business context.

An additional benefit is that context specific Read Models can be added, extended or rebuilt directly from the Event Store by

replaying Events without the need to re-query the original provider of the Event information. Events on specific Aggregates use a

Snapshot Model to optimize the number of Events that need to be read to create an Aggregate or Projection. Snapshots also allow

for older Events to be archived or removed after the snapshot is made.

“The Event Store uses a quorum based model for replication. This replication model ensures consistency throughout the replica

group and is a well-known replication model. A main strength is that it is fully consistent. There are not possibilities of conflicting

data on different nodes (i.e. A accepted a write without seeing the write to C). For most business systems this is a huge gain as

dealing with these rare problems often gets looked over when using models that allows them.”

“Another strength is that failovers happen very quickly with minimal impact on clients. This is especially true when you consider that

the nodes internally route so the client does not need to in most cases know who the leader is. Along with this, for a group of three

nodes, so long as any two are up and communicating the system is considered running and consistent.”3

3 https://geteventstore.com/blog/20130301/ensuring-writes-multi-node-replication/

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

11 | P a g e

3.2.11 LOW LEVEL REPOSITORY

Low Level Repositories are data stores that are the responsibility of the AOC and interact directly with the ACES Internal Services.

While there are several other low level data stores which may integrate with ACES, those are accomplished strictly through Domain

Adapters and an API Gateway. This separation allows extensible business rules, filters, routing and notification to occur throughout

the system.

Currently there are 7 Low Level Repositories connected to ACES:

3.2.11.1 CCI

CCI, the Central Case Index is a Read Model and is used for cross court rapid access to common Court Case Information. As Case

Management Systems change Court Case related data, this is communicated to ACES which internally moves the appropriate change

into CCI. Other systems may now access current statewide Court Case Information such as eFiling, eAccess and eBench. CCI also

serves as a trigger point for the Process Managers that feed inter-agency notifications such as NICS. As other systems require

notification, they are easily added as l isteners which handle Events published with the ACES Canonical Message Model for

processing. Several legacy systems that relied on the Data Warehouse for such processing are now being moved into ACES.

3.2.11.2 AJACS

AJACS is the State Standard Case Management System. This is the Source Write Model for 13 Superior Courts and several Lower

Jurisdiction Courts. More Lower Jurisdiction Courts are being added constantly until all AZTEC Courts have been moved to AJACS.

3.2.11.3 AZTEC

AZTEC is the Legacy State Standard Case Management System currently being replaced by AJACS. During the time that AZTEC Courts

are being moved to AJACS, AZTEC Data may participate in the ACES System.

3.2.11.4 ROAM

ROAM is a Rapid Index system used by Appelamation and eAccess for queries regarding Court Case Information. The ROAM System

is being deprecated in favor of CCI for Appelamation, though it is still being used as a front line Read Model for eAccess. This

particular ROAM Index is however, populated by ACES.

3.2.11.5 DATA WAREHOUSE

This Legacy Warehouse is a central repository for several legacy system’s data. This is gradually being replaced by ACES.

3.2.11.6 EDMS

EDMS is the Document Repository which consists of a Central Document Repository in OnBase as well as some local repositories for

business unit specific applications. There is also a Message Gateway used to access remote Document Repositories which may

deliver remote Documents on demand. For instance, when a Document from a Court that does not participate in the CDR is

requested from ACES, it is delivered from the Message Gateway which retrieves it from the remote Court’s provided Service

Interface, which again are processed through a Domain Adapter bringing the result into the Canonical Message Model.

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

12 | P a g e

3.2.12 EXTERNAL ELEMENTS

External elements for which communication is necessary must use a Domain Adapter and Message Gateway to interact with ACES.

One of these elements is the National Instant Criminal Background Check System (NICS). When Source System (CMS) data is pulled,

each incoming record issues a Command to Update a CourtCase Aggregate. The CourtCase Aggregate evaluates the incoming data

for consistency and publishes Incoming Data Events. ACES Event Listeners (or “handlers”) react to the Incoming Data Events.

ACES Event Listeners produce other Command and Event Messages by applying Rules for various systems such as CCI and NICS.

There is no practical l imit to the number of ACES Event Listeners and they can be added or modified independently.

The ACES NICS Event Listener evaluates changes that qualify for NICS, when found, a NICS Incoming Data Success Event is produced.

NICS Incoming Data Success Events are collected by a Domain Service reflecting the now current state of the CourtCase. The Domain

Service issues a Command to send the data to the NICS System in its own format through the use of a Domain Adapter. NICS

Responds to the ACES Command which produces a NICS Data Sent Event. This Event is then processed by Pipes and Filters to send

the result back to the Source System (CMS). This may be accomplished by the Pipes and Filters sending the response as a Document

Message to the Source System for notification. Alternatively, ACES could Pipe the response to a Command which invokes a

Composed Message Processor responsible for composing an Email Report it will send at the end of the day.

Whatever the business context requires is achievable by ACES in this respect as a Reactive Event based system.

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

13 | P a g e

4 MESSAGE PROCESSING

“A Message is a fundamental building block when using message-based systems, one within which you package the information

necessary to communicate actions and related data between systems.” (Vernon, 2016)

The Message functionality within ACES uses a technique that is called “Location Transparency.” Messages intended for a specif ic

receiver can be communicated equally well whether the receiver is remote or local. Code is written without regard to where the

receiver actually l ives. Receivers may be in a local process, a remote process, or even a server in another building. The Code remains

the same even if the receiver moves locations. Everything is designed to work in a distributed setting with information about the

setting provided by configuration data. All interaction is purely message passing and asynchronous.

The asynchronous character of the system also helps to ensure the scalability of the system, so that all functionality is available

equally when running within a single processor or on a cluster of hundreds of machines. In this respect, local communication

becomes an optimization rather than attempting to expand later by adding remote capability.

ACES uses 4 Fundamental message patterns to control all information.

4.1 COMMAND MESSAGE

A Command is a request that causes a state transition (Woolf, 2004). A Command Message is a message intended to alter state

within ACES, but may also elicit a Response Message usually in the form of a Document Message.

4.2 EVENT MESSAGE

An Event Message conveys information that has already happened with the system. Events Messages are used to convey state

transitions to both internal and external systems. All Events within ACES are stored as transactional elements in an Event Store.

It is imperative that Events are verbs in the past tense, they are part of a Ubiquitous Language. In Domain-Driven Design terms, the

Event makes the concept of what happened in the Event explicit, not something to be explored and defined.

4.3 DOCUMENT MESSAGE

Document Messages convey information without indicating how the data should be used. Quite often a Doc ument Message within

ACES can assist in managing workflow or long-running processes. As each step in the process completes, it may append to the

Document Message until it is fully composed for delivery to the original requestor.

4.4 QUERY MESSAGE

A Query Message is a special kind of Command Message in which a reply is expected in the format of a Document Message. While

the Command is not strictly requesting a change in state, it is requesting a reply that needs to be fulfilled. Fulfilling a Query may be

done by an Aggregator or Composed Message Processor that compiles the results from several other Document or Event Messages.

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

14 | P a g e

4.5 COMMUNICATION MATRIX AND MESSAGE FORMAT

Messages internal to ACES use a Canonical Message Model. This Canonical Message Model is carefully tracked and versioned if any

changes are necessary. Messages between ACES and External Systems will use agreed upon Application Level messages through an

API Gateway. Since these messages may not conform to the Canonical Message Model, the use of Message Translators for the

external system Messages may be necessary.

For Example, communication with the eFil ing system is done through the use of an API Gateway, this external interface conforms to

the Oasis ECF XML Messaging Standard. When a Message is received from the eFiling system it is routed to a Domain Adapter which

invokes a Message Translator supporting the translation of an ECF XML Message into the Canonical Message Model which in turn

executes Command Messages on ACES. This results in a Canonical Document Message being received in which a Message Translator

translates the Canonical Document Message back into an ECF Formatted XML Message for the API Gateway to return to the eFil ing

system.

When the CourtCase Domain Aggregate assembles CourtCase Information from various Entities and Value Objects, the messages all

conform to the Canonical Message Model of ACES and no translation is necessary.

Another example is, DocLink, a Public Interface which allows authorized access to CourtCase Related Documents. Since this External

Interface conforms to the Canonical Message Model, no translation is necessary. For accessing Documents not in the CDR, a

Message Translator and Domain Adapter is used to talk to the remote EDMS which conveys the remote information back to the

Canonical Message Model.

This methodology allows the Canonical Message Model to adapt to any external system with effort only being placed into a single

Domain Adapter.

Messaging also provides an enormous gain in performance potential. Here I demonstrate how asynchronous messaging increases

efficiency for eFiling. When requesting a CourtCase, we could process everything one after the other to build up the CourtCase, this

takes 30 seconds, the sum of all the Queries… If I do the exact same request asynchronously in parallel, it takes only 0.3 seconds, the

slowest of all the individual Queries.

GetCase

Court

Case

Parties

Attys

Orgs

Judge

Docs

Case Data
(30000 ms)

Court Case Parties Attys Orgs Judge Docs

GetCase

Case Data
(300 ms)

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

15 | P a g e

5 DESIGN PATTERN REFER ENCE

This section describes some of the Design Patterns used in this document.

Message Endpoint

In a messaging system, the sender and receiver of Messages are both Message Endpoints.

API Gateway

An API Gateway is a known location for external systems to interact with ACES through messaging.

Message Translator

A Message Translator transforms the data from a Message to data that is compatible with the local, receiving application.

Message Router

When a Message is received, some property of the message or the environment is checked and the Message is then routed to an

appropriate Message Channel that satisfies the business or technical condition.

Pipes and Filters

This is when you compose a process by chaining together any number of processing steps. Since these steps are not dependent on

one another, they can be rearranged or replaced as the need arises. This forms a pipeline in which Messages are processed for

delivery and the fi lter is what controls the direction the next step in the process takes. Order usually matters and rearranging the

processing steps on the same message could alter the result.

Canonical Message Model

A Canonical Message Model is different from Canonical Data Model. Coordinating stakeholders of every application to support a

common data model is typically a futile effort that most often fails. On the other hand, a Canonical Message Model instead allows

each application to define their own local Models and still use a common set of Command, Event and Document Messages to convey

information between systems. When Systems elect to interact with ACES, exchanging information becomes a collaboration of how

to compose and pass new or existing context specific Messages rather than realigning Canonical Data Models. This is a dramatically

smaller effort than coordinating and catering to every stakeholder’s specific data needs.

ACES STRATEGIC DESIGN

V1.0 – JUNE 1, 2016

16 | P a g e

6 WORKS CITED

Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston: Addison-Wesley.

Fowler, M. (2003). Patterns of Enterprise Application Architecture. Boston: Addison-Wesley.

Thomas Manes, A. (2009). SOA is Dead; Long Live Services. http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-

services.html: VP and Distinguished Analyst at Gartner, Inc.

Vernon, V. (2013). Implementing Domain-Driven Design. Boston: Addison-Wesley.

Vernon, V. (2016). Reactive messaging patterns with the Actor model : applications and integration in Scala and Akka. Boston:

Addison-Wesley.

Woolf, B. a. (2004). Enterprise Integration Patterns. Boston: Addison-Wesley.

7 RELATED DOCUMENTS

Oasis ECF 4.01 Standard with AOC Extensions

CCI Data Request Dictionary

DocLink Security Standard

ACES Functional Requirements

http://tfsportal/AOC/ArchInt/Projects/Forms/AllItems.aspx?RootFolder=%2FAOC%2FArchInt%2FProjects%2FAOC%20%2D%20efiling%20Specifications&FolderCTID=0x0120007DBE6C9F0D2DF54D9B100FE9E7E877B1&View=%7b56E0480C-6A71-4DC2-9C3F-66C22D551275%7d&InitialTabId=Ribbon%2EDocument
http://tfsportal/AOC/ArchInt/Projects/Forms/AllItems.aspx?RootFolder=%2FAOC%2FArchInt%2FProjects%2FCentral%20Case%20Index%20%28CCI%29%2FRequirements%2FBusiness&FolderCTID=0x0120007DBE6C9F0D2DF54D9B100FE9E7E877B1&View=%7b56E0480C-6A71-4DC2-9C3F-66C22D551275%7d&InitialTabId=Ribbon%2EDocument&VisibilityContext=WSSTabPersistence
http://tfsportal/AOC/ArchInt/Projects/Forms/AllItems.aspx?RootFolder=%2FAOC%2FArchInt%2FProjects%2FACES&FolderCTID=0x0120007DBE6C9F0D2DF54D9B100FE9E7E877B1&View=%7b56E0480C-6A71-4DC2-9C3F-66C22D551275%7d&InitialTabId=Ribbon%2EDocument&VisibilityContext=WSSTabPersistence

